This paper presents a scatterer information estimation method for both E- and H-polarizations based on a time-domain saddle-point technique (TD-SPT). The method utilizes numerical data of the response waveforms of the reflected geometric optical ray (RGO) series, which constitute the backward transient scattering field components when a line source and an observation point are at the same location. A scatterer selected in the paper is a two-dimensional (2-D) coated cylinder. The three types of scatterer information are the relative permittivity of a coating medium layer and its thickness, and the outer radius of a coated cylinder. Specifically, the scatterer information estimation formulas are derived by applying the TD-SPT represented in RGO series to the amplitude intensity ratios (AIRs) of adjacent RGO components. By focusing on the analytical results that the AIRs are independent of polarization, we analytically clarify that all the estimation formulas derived here denote polarization independence. The estimates are obtained by substituting numerical data of the peaks of the response waveforms of the RGO components and their arrival times, as well as numerical parameters of a pulse source, into the estimation formulas and performing iterative calculations. We derive approximations to the estimation errors that are useful in quantitatively evaluating the errors of the estimates. The effectiveness of the scatterer information estimation method is substantiated by comparing the estimates with the set values. The polarization independence of the estimation formulas is validated numerically by contrasting the estimates for E- and H-polarizations. The estimation errors are discussed using the approximations to the errors of the estimates when a line source and an observation point are at the same location. Thereafter, the discrepancies that arise between the estimation errors when a line source and an observation point are at different locations are discussed. The methods to control the estimation accuracy and the computational time are also discussed.
A dual-band decoupling strategy via artificial transmission line (TL) for closely spaced two-element multiple-input multiple-output (MIMO) antenna is proposed, which consists of two composite right-/left-handed TLs for dual-band phase shifting and a cross-shaped TL for susceptance elimination to counteract the real and imaginary part of the mutual coupling coefficient S21 at dual frequency bands, respectively. The decoupling principle and detailed design process of the dual-band decoupling scheme are presented. To validate the dual-band decoupling technique, a closely spaced dual-band MIMO antenna for 5G (sub-6G frequency band) utilization is designed, fabricated, and tested. The experimental results agree well with the simulation ones. A dual-band of 3.40 GHz-3.59 GHz and 4.79 GHz-4.99 GHz (S11&S22 < -10 dB, S12&S21 < -20 dB) has been achieved, and the mutual coupling coefficient S21 is significantly reduced 21 dB and 16.1 dB at 3.5 GHz and 4.9 GHz, respectively. In addition, the proposed dual-band decoupling scheme is antenna independent, and it is very suitable for other tightly coupled dual-band MIMO antennas.
This paper proposes two VLSI implementation approaches for periods estimation hardware of periodic signals. Digital signal processing is one of the important technologies, and to estimate periods of signals are widely used in many areas such as IoT, predictive maintenance, anomaly detection, health monitoring, and so on. This paper focuses on accumulation for real-time serial-to-parallel converter (ARS) which is a simple parameter estimation method for periodic signals. ARS is simple algorithm to estimate periods of periodic signals without complex instructions such as multiplier and division. However, this algorithm is implemented only on software, suitable hardware implementation methods are not clear. Therefore, this paper proposes two VLSI implementation methods called ARS-DFF and ARS-MEM. ARS-DFF is simple and fast implementation method, but hardware scale is large. ARS-MEM reduces hardware scale by introducing an SRAM macro cell. This paper also designs both approaches using SystemVerilog and evaluates VLSI implementation. According to our evaluation results, both proposed methods can reduce the power consumption to less than 1/1000 compared to the implementation on a microprocessor.
This study introduces a pattern-matching method to enhance the efficiency and accuracy of physical verification of cell libraries. The pattern-matching method swiftly compares layouts of all I/O units within a specific area, identifying significantly different I/O units. Utilizing random sampling or full permutation can improve the efficiency of verification of I/O cell libraries. All permutations within an 11-unit I/O unit library can produce 39,916,800 I/O units (11!), far exceeding the capacity of current IC layout software. However, the proposed algorithm generates the layout file within 1 second and significantly reduces the DRC verification time from infinite duration to 63 seconds executing 415 DRC rules. This approach effectively improves the potential to detect layer density errors in I/O libraries. While conventional processes detect layer density and DRC issues only when adjacent I/O cells are placed due to layout size and machine constraints, in this work, the proposed algorithm selectively generates multiple distinct combinations of I/O cells for verification, crucial for improving the accuracy of physical design.
Due to the limited lifespan of Micro-Electro-Mechanical Systems (MEMS), their components need to be replaced regularly. For intelligent devices such as electronic noses, updating an intelligent gas sensor system requires establishing a new classifier model for the newly inserted gas sensor probes because of the poor consistency between the signals collected by the new and original systems. The traditional method involves retraining the new model by collecting adequate data of the gas sensor array under strict laboratory conditions, which is time-consuming and resource-intensive. To simplify and expedite this process, a federated learning method called FedGSSU is proposed for gas sensor system updating. Two datasets were used to verify the effectiveness of the proposed framework. The experimental results show that FedGSSU can effectively utilize the original classifier model to obtain a new classifier model while only replacing the gas sensor array. The consistency between the new gas sensor system and the original one reaches up to 90.17%, and the test accuracy is increased by 4 percentage points compared to the traditional method. While replacing sensors with FedGSSU will reduce recognition accuracy slightly, it is more acceptable in scenarios where high accuracy is not required than re-calibrating sensors and re-training the classifier.
Promising proposals of a material, deposition process, and storage device have been demonstrated for neuromorphic systems. The material is Ga-Sn-O (GTO), amorphous metal-oxide semiconductor, and does not contain rare metals such as In. The deposition process is a mist chemical-vapor-deposition (CVD) method, atmospheric pressure process. Therefore, the material and fabrication costs can be simultaneously saved, and three-dimensional stacked structures will be possible. The storage device is an analog memristor, a kind of memristors, but has continuous conductance, and analog computing will be possible owing to continuous weights of synapse elements in neural networks. These structures and computing are the same as those in living brains. We have succeeded in attaining an analog memristive characteristic by optimizing the Ga:Sn composition rate, namely, completing an analog memristor. The analog memristor of the GTO thin film by the mist CVD method can be expected to be a key component for neuromorphic systems.
This study discusses the behavior of resonant tunneling diode (RTD) oscillators when a transmission line (TL) stub is added. The TL stub acts as a delayed feedback unit, resulting in unstable and complex oscillation behavior. Circuit simulation showed that the circuits generate various waveforms, including chaos, by changing the stub length. Experimental demonstration of the simulation results was performed using circuits fabricated with hybrid integration techniques using an InGaAs/AlAs RTD. These complex signals have potential for various applications in the THz frequency range. On the other hand, this finding is significant for the design of THz oscillators using an RTD, since even a small metal pattern can cause such a feedback effect in the THz frequency range. In particular, interconnect wiring patterns can cause this effect because reflection due to impedance mismatch is unavoidable.