TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)
Online ISSN : 1880-0408
Print ISSN : 0389-2441
ISSN-L : 0389-2441
Volume 38, Issue 2
Displaying 1-5 of 5 articles from this issue
Preface
Originals
  • Youngseok KIM, Sanghyun KIM, Toshiya HARANO, Makoto TSUDA, Naoyuki HAR ...
    Article type: Others
    Subject area: Others
    2003 Volume 38 Issue 2 Pages 54-61
    Published: 2003
    Released on J-STAGE: August 26, 2005
    JOURNAL FREE ACCESS
    It is important to control the layer current distributions of coaxial multi-layer HTS cables because homogeneous layer current distribution decreases AC loss and can supply the largest operational current. In a previous paper, we proposed a theory that can control current distribution based on the concept of flux conservation between two adjacent layers, and demonstrated the theory is in good agreement with experiment results. The theory was effective for an operational current less than the critical current of the cable. It is important to investigate current distribution under the condition of operational current more than the critical current of the cable because the cable experiences fault currents. We have extended the theory to treat the operational current more than the critical current by considering V-I nonlinear characteristics of HTS tapes including flux flow resistance and contact resistance between the cable and terminals. In order to verify the extended theory, we have fabricated a two-layer cable with the same twisting layer pitch, and hence caused inhomogeneous current distribution. It was observed that almost all of operational current less than the critical current flowed on the outer layer because of its lower inductance. When the operational current increased above the critical current of the second layer, the flux flow resistance appeared and distorted the current waveform with phase deviations. Finally, in the case of operational current more than the critical currents of both layers, flux flow resistance strongly affected current waveforms, and thereby the currents of both layers were determined by flux flow resistance. The extended theory simulated the layer current distribution waveforms and demonstrated good agreement with the experimental results under all operational current regions.
    Download PDF (802K)
  • Wataru YAGI, Uichiro MIZUTANI
    Article type: Others
    Subject area: Others
    2003 Volume 38 Issue 2 Pages 62-68
    Published: 2003
    Released on J-STAGE: August 26, 2005
    JOURNAL FREE ACCESS
    The refrigeration capacity of a conventional GM refrigerator was studied over a temperature range of 7-25 K by employing a second-stage regenerator stacked in series using different Ag-based regenerator materials, RAg (R=Pr, Er, Ho), together with pure metals, Pb, Cu and Ag. The combinations of PrAg/HoAg and PrAg/Pb stacked as columns in series could reach the lowest temperature of 7.0 K in contrast to that of 7.3 K reached with the conventional Er3Ni compound, as far as the present refrigerator is concerned. These combinations are in possession of specific heats over the temperature range of 7-25 K, consistently higher than that of Er3Ni. Moreover, we revealed that, if the amount of PrAg is increased, the replacement of Pb with Ag or Cu at the high-temperature end of the regenerator is possible without affecting the refrigeration capacity of reaching the lowest temperature of 7.0 K. Therefore, we conclude that combinations of PrAg/Ag and PrAg/Cu stacked in stratified form can serve as environment-friendly regenerator materials in the temperature range below 25K.
    Download PDF (661K)
  • Nobuhiro KIMURA, Hirotaka NAKAI, Masahide MURAKAMI, Akira YAMAMOTO, Ta ...
    Article type: Others
    Subject area: Others
    2003 Volume 38 Issue 2 Pages 69-76
    Published: 2003
    Released on J-STAGE: August 26, 2005
    JOURNAL FREE ACCESS
    The characteristics of pressurized superfluid helium heat transfer through fine channels have been studied experimentally. Since past studies regarding this subject have been concerned with channels of relatively larger diameter, much smaller channels were employed for the pressurized superfluid helium passages in this study in order to extend the validity of the previous theory and discussions on the heat transfer characteristics. This experimental study reveals that the heat transfer characteristics of pressurized helium are applicable through fine channels with a cross-sectional area as small as 10-9 m2.
    Download PDF (726K)
  • Sung-Jin YU, Shin-ichi TAKEDA, Isao TARI, Shigehiro NISHIJIMA, Atsushi ...
    Article type: Others
    Subject area: Others
    2003 Volume 38 Issue 2 Pages 77-82
    Published: 2003
    Released on J-STAGE: August 26, 2005
    JOURNAL FREE ACCESS
    The recovery of organic dye molecules from aqueous solution was accomplished using a magnetic colloid seeding process under high-gradient magnetic separation. The recovery fraction of the dye molecule using prepared magnetic colloid was found to be much higher than that using magnetite particles. It was found that the recovery fraction of the dye molecule was dependent on the adsorption capacity of the dye molecule. We also confirmed that, among the dyes with various kinds of molecular structures and functional groups, the dye molecules having the azo group could adsorb more easily onto the colloid particles than the dye without the azo group.
    Download PDF (474K)
feedback
Top