2016 Volume 63 Issue 8 Pages 719-724
The sintered composite of Bi0.5Sb1.5Te3 and ionic liquid, BMImTFSI, was synthesized by sintering the mixture of Bi0.5Sb1.5Te3 powder and BMImTFSI at 573 K by hot pressing, and its microscopic structure and thermoelectric properties were investigated. The dispersed micropores, where BMImTFSI occupied, were observed by SEM observation on the cross-section of Bi0.5Sb1.5Te3-BMImTFSI sintered composite. With an increase of the amount of BMImTFSI, the Seebeck coefficient of the composite generally decreased, while the electrical resistivity increased and the electrical resistivity of the composite with 0.5 ml of BMImTFSI is about two times larger than that of Bi0.5Sb1.5Te3 with no BMImTFSI. The thermal conductivity of the composite with 0.01 ml of BMImTFSI was reduced by about 20 % compared to that of Bi0.5Sb1.5Te3 with no BMImTFSI. These results indicate that the dispersed BMImTFSI in the composite acts as a scattering center for electric carrier and phonon. As a result, the dimensionless figure of merit ZT of the composite with 0.01 ml of BMImTFSI showed a maximum value of 0.70 at 373 K, which was about 20 % larger than that of Bi0.5Sb1.5Te3 with no BMImTFSI.