Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Two Fuzzy Clustering Algorithms Based on ARMA Model
Tomoki Nomura Yuchi Kanzawa
Author information
JOURNAL OPEN ACCESS

2024 Volume 28 Issue 6 Pages 1251-1262

Details
Abstract

This study proposes two fuzzy clustering algorithms based on autoregressive moving average (ARMA) model for series data. The first, referred to as Tsallis entropy-regularized fuzzy c-ARMA model (TFCARMA), is created from k-ARMA, a conventional hard clustering algorithm for series data. TFCARMA is motivated by the relationship between the two clustering algorithms for vectorial data: k-means and Tsallis entropy-regularized fuzzy c-means. The second, referred to as q-divergence-based fuzzy c-ARMA model (QFCARMA), is created from ARMA mixtures, a conventional probabilistic clustering algorithm for series data. QFCARMA is motivated by the relationship between the two clustering algorithms for vectorial data: Gaussian mixture model and q-divergence-based fuzzy c-means. Based on numerical experiments using an artificial dataset, we observed the effects of fuzzification parameters in the proposed algorithms and relationship between the proposed and conventional algorithms. Moreover, numerical experiments using seven real datasets compared the clustering accuracy among the proposed and conventional algorithms.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top