Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Robustness Analyses and Optimal Sampling Gap of Recurrent Neural Network for Dynamic Matrix Pseudoinversion
Bolin LiaoQiuhong Xiang
Author information
JOURNAL OPEN ACCESS

2017 Volume 21 Issue 5 Pages 778-784

Details
Abstract

This study analyses the robustness and convergence characteristics of a neural network. First, a special class of recurrent neural network (RNN), termed a continuous-time Zhang neural network (CTZNN) model, is presented and investigated for dynamic matrix pseudoinversion. Theoretical analysis of the CTZNN model demonstrates that it has good robustness against various types of noise. In addition, considering the requirements of digital implementation and online computation, the optimal sampling gap for a discrete-time Zhang neural network (DTZNN) model under noisy environments is proposed. Finally, experimental results are presented, which further substantiate the theoretical analyses and demonstrate the effectiveness of the proposed ZNN models for computing a dynamic matrix pseudoinverse under noisy environments.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top