Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Classification of Evoked Emotions Using an Artificial Neural Network Based on Single, Short-Term Physiological Signals
Shanbin ZhangGuangyuan LiuXiangwei Lai
Author information
JOURNAL OPEN ACCESS

2015 Volume 19 Issue 1 Pages 118-126

Details
Abstract

Most automated analysis methods related to biosignal-based human Emotions collect their data using multiple physiological signals, long-term physiological signals, or both. However, this restricts their ability to identify Emotions in an efficient manner. This study classifies evoked Emotions based on two types of single, short-term physiological signals: electrocardiograms (ECGs) and galvanic skin responses (GSRs) respectively. Estimated recognition times are also recorded and analyzed. First, we perform experiments using film excerpts selected to elicit target Emotions that include anger, grief, fear, happiness, and calmness; ECG and GSR signals are collected during these experiments. Next, a wavelet transform is applied to process the truncated ECG data, and a Butterworth filter is applied to process the truncated GSR signals, in order to extract the required features. Finally, the five different Emotion types are classified by employing an artificial neural network (ANN) based on the two signals. Average classification accuracy rates of 89.14% and 82.29% were achieved in the experiments using ECG data and GSR data, respectively. In addition, the total time required for feature extraction and emotional classification did not exceed 0.15 s for either ECG or GSR signals.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top